Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(25): 8919-8927, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35687534

RESUMO

Medical diagnostics is moving toward disease-related target detection at very low concentrations because of the (1) quest for early-stage diagnosis, at a point where only limited target amounts are present, (2) trend toward minimally invasive sample extraction, yielding samples containing low concentrations of target, and (3) need for straightforward sample collection, usually resulting in limited volume collected. Hence, diagnostic tools allowing ultrasensitive target detection at the point-of-care (POC) are crucial for simplified and timely diagnosis of many illnesses. Therefore, we developed an innovative, fully integrated, semi-automated, and economically viable platform based on (1) digital microfluidics (DMF), enabling automated manipulation and analysis of very low sample volumes and (2) low-cost disposable DMF chips with microwell arrays, fabricated via roll-to-roll processes and allowing digital target counting. Thyroid stimulating hormone detection was chosen as a relevant application to show the potential of the system. The assay buffer was selected using design of experiments, and the assay was optimized in terms of reagent concentration and incubation time toward maximum sensitivity. The hydrophobic-in-hydrophobic microwells showed an unparalleled seeding efficiency of 97.6% ± 0.6%. A calculated LOD of 0.0013 µIU/mL was obtained, showing the great potential of the platform, especially taking into account the very low sample volume analyzed (1.1 µL). Although validation (in biological matrix) and industrialization (full automation) steps still need to be taken, it is clear that the combination of DMF, low-cost DMF chips, and digital analyte counting in microwell arrays enables the implementation of ultrasensitive and reliable target detection at the POC.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Tireotropina , Automação , Bioensaio , Microfluídica/métodos
2.
Micromachines (Basel) ; 11(3)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183431

RESUMO

When screening microbial populations or consortia for interesting cells, their selective retrieval for further study can be of great interest. To this end, traditional fluorescence activated cell sorting (FACS) and optical tweezers (OT) enabled methods have typically been used. However, the former, although allowing cell sorting, fails to track dynamic cell behavior, while the latter has been limited to complex channel-based microfluidic platforms. In this study, digital microfluidics (DMF) was integrated with OT for selective trapping, relocation, and further proliferation of single bacterial cells, while offering continuous imaging of cells to evaluate dynamic cell behavior. To enable this, magnetic beads coated with Salmonella Typhimurium-targeting antibodies were seeded in the microwell array of the DMF platform, and used to capture single cells of a fluorescent S. Typhimurium population. Next, OT were used to select a bead with a bacterium of interest, based on its fluorescent expression, and to relocate this bead to a different microwell on the same or different array. Using an agar patch affixed on top, the relocated bacterium was subsequently allowed to proliferate. Our OT-integrated DMF platform thus successfully enabled selective trapping, retrieval, relocation, and proliferation of bacteria of interest at single-cell level, thereby enabling their downstream analysis.

3.
ACS Sens ; 4(9): 2327-2335, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31436077

RESUMO

The ability to detect low concentrations of protein biomarkers is crucial for the early-stage detection of many diseases and therefore indispensable for improving diagnostic devices for healthcare. Here, we demonstrate that by integrating DNA nanotechnologies like DNA origami and aptamers, we can design innovative biosensing concepts for reproducible and sensitive detection of specific targets. DNA origami structures decorated with aptamers were studied as a novel tool to structure the biosensor surface with nanoscale precision in a digital detection bioassay, enabling control of the density, orientation, and accessibility of the bioreceptor to optimize the interaction between target and aptamer. DNA origami was used to control the spatial distribution of an in-house-generated aptamer on superparamagnetic microparticles, resulting in an origami-linked digital aptamer bioassay to detect the main peanut antigen Ara h1 with 2-fold improved signal-to-noise ratio and 15-fold improved limit of detection compared to a digital bioassay without DNA origami. Moreover, the sensitivity achieved was 4 orders of magnitude higher than commercially available and literature-reported enzyme-linked immunosorbent assay techniques. In conclusion, this novel and innovative approach to engineer biosensing interfaces will be of major interest to scientists and clinicians looking for new molecular insights and ultrasensitive detection of a broad range of targets, and, for the next generation of diagnostics.


Assuntos
Bioensaio/instrumentação , Microtecnologia/instrumentação , Nanotecnologia , Silício/química , Imagem Individual de Molécula/instrumentação , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
4.
Microsyst Nanoeng ; 5: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231538

RESUMO

Patterning of micro- and nanoscale topologies and surface properties of polymer devices is of particular importance for a broad range of life science applications, including cell-adhesion assays and highly sensitive bioassays. The manufacturing of such devices necessitates cumbersome multiple-step fabrication procedures and results in surface properties which degrade over time. This critically hinders their wide-spread dissemination. Here, we simultaneously mold and surface energy pattern microstructures in off-stoichiometric thiol-ene by area-selective monomer self-assembly in a rapid micro-reaction injection molding cycle. We replicated arrays of 1,843,650 hydrophilic-in-hydrophobic femtolitre-wells with long-term stable surface properties and magnetically trapped beads with 75% and 87.2% efficiency in single- and multiple-seeding events, respectively. These results form the basis for ultrasensitive digital biosensors, specifically, and for the fabrication of medical devices and life science research tools, generally.

5.
Materials (Basel) ; 11(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966223

RESUMO

This paper investigates the effects on the blood compatibility of surface nanostructuring of Parylene-C coating. The proposed technique, based on the consecutive use of O2 and SF6 plasma, alters the surface roughness and enhances the intrinsic hydrophobicity of Parylene-C. The degree of hydrophobicity of the prepared surface can be precisely controlled by opportunely adjusting the plasma exposure times. Static contact angle measurements, performed on treated Parylene-C, showed a maximum contact angle of 158°. The nanostructured Parylene-C retained its hydrophobicity up to 45 days, when stored in a dry environment. Storing the samples in a body-mimicking solution caused the contact angle to progressively decrease. However, at the end of the measurement, the plasma treated surfaces still exhibited a higher hydrophobicity than the untreated counterparts. The proposed treatment improved the performance of the polymer as a water diffusion barrier in a body simulating environment. Modifying the nanotopography of the polymer influences the adsorption of different blood plasma proteins. The adsorption of albumin—a platelet adhesion inhibitor—and of fibrinogen—a platelet adhesion promoter—was studied by fluorescence microscopy. The adsorption capacity increased monotonically with increasing hydrophobicity for both studied proteins. The effect on albumin adsorption was considerably higher than on fibrinogen. Study of the proteins simultaneous adsorption showed that the albumin to fibrinogen adsorbed ratio increases with substrate hydrophobicity, suggesting lower thrombogenicity of the nanostructured surfaces. Animal experiments proved that the treated surfaces did not trigger any blood clot or thrombus formation when directly exposed to the arterial blood flow. The findings above, together with the exceptional mechanical and insulation properties of Parylene-C, support its use for packaging implants chronically exposed to the blood flow.

6.
Anal Chim Acta ; 1015: 74-81, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29530254

RESUMO

The close correlation between Tau pathology and Alzheimer's disease (AD) progression makes this protein a suitable biomarker for diagnosis and monitoring of the disorder evolution. However, the use of Tau in diagnostics has been hampered, as it currently requires collection of cerebrospinal fluid (CSF), which is an invasive clinical procedure. Although measuring Tau-levels in blood plasma would be favorable, the concentrations are below the detection limit of a conventional ELISA. In this work, we developed a digital ELISA for the quantification of attomolar protein Tau concentrations in both buffer and biological samples. Individual Tau molecules were first captured on the surface of magnetic particles using in-house developed antibodies and subsequently isolated into the femtoliter-sized wells of a 2 × 2 mm2 microwell array. Combination of high-affinity antibodies, optimal assay conditions and a digital quantification approach resulted in a 24 ±â€¯7 aM limit of detection (LOD) in buffer samples. Additionally, a dynamic range of 6 orders of magnitude was achieved by combining the digital readout with an analogue approach, allowing quantification from attomolar to picomolar levels of Tau using the same platform. This proves the compatibility of the presented assay with the wide range of Tau concentrations encountered in different biological samples. Next, the developed digital assay was applied to detect total Tau levels in spiked blood plasma. A similar LOD (55 ±â€¯29 aM) was obtained compared to the buffer samples, which was 5000-fold more sensitive than commercially available ELISAs and even outperformed previously reported digital assays with 10-fold increase in sensitivity. Finally, the performance of the developed digital ELISA was assessed by quantifying protein Tau in three clinical CSF samples. Here, a high correlation (i.e. Pearson coefficient of 0.99) was found between the measured percentage of active particles and the reference protein Tau values. The presented digital ELISA technology has great capacity in unlocking the potential of Tau as biomarker for early AD diagnosis.


Assuntos
Doença de Alzheimer/sangue , Ensaio de Imunoadsorção Enzimática , Proteínas tau/sangue , Biomarcadores/sangue , Humanos
7.
Anal Chim Acta ; 1000: 191-198, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29289308

RESUMO

The lab-on-a-chip (LOC) field has witnessed an excess of new technology concepts, especially for the point-of-care (POC) applications. However, only few concepts reached the POC market often because of challenging integration with pumping and detection systems as well as with complex biological assays. Recently, a new technology termed SIMPLE was introduced as a promising POC platform due to its features of being self-powered, autonomous in liquid manipulations, cost-effective and amenable to mass production. In this paper, we improved the SIMPLE design and fabrication and demonstrated for the first time that the SIMPLE platform can be successfully integrated with biological assays by quantifying creatinine, biomarker for chronic kidney disease, in plasma samples. To validate the robustness of the SIMPLE technology, we integrated a SIMPLE-based microfluidic cartridge with colorimetric read-out system into the benchtop Creasensor. This allowed us to perform on-field validation of the Creasensor in a single-blind study with 16 plasma samples, showing excellent agreement between measured and spiked creatinine concentrations (ICC: 0.97). Moreover, the range of clinically relevant concentrations (0.76-20 mg/dL), the sample volume (5 µL) and time-to-result of only 5 min matched the Creasensor performance with both lab based and POC benchmark technologies. This study demonstrated for the first time outstanding robustness of the SIMPLE in supporting the implementation of biological assays. The SIMPLE flexibility in liquid manipulation and compatibility with different sample matrices opens up numerous opportunities for implementing more complex assays and expanding its POC applications portfolio.


Assuntos
Creatinina/sangue , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito
8.
ACS Sens ; 3(2): 264-284, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29363316

RESUMO

Over the last decades, the study of cells, nucleic acid molecules, and proteins has evolved from ensemble measurements to so-called single-entity studies. The latter offers huge benefits, not only as biological research tools to examine heterogeneities among individual entities within a population, but also as biosensing tools for medical diagnostics, which can reach the ultimate sensitivity by detecting single targets. Whereas various techniques for single-entity detection have been reported, this review focuses on microfluidic systems that physically confine single targets in small reaction volumes. We categorize these techniques as droplet-, microchamber-, and nanostructure-based and provide an overview of their implementation for studying single cells, nucleic acids, and proteins. We furthermore reflect on the advantages and limitations of these techniques and highlight future opportunities in the field.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos , Técnicas Biossensoriais/tendências , Técnicas Analíticas Microfluídicas/tendências , Ácidos Nucleicos/análise , Proteínas/análise , Análise de Célula Única/tendências
9.
ACS Appl Mater Interfaces ; 9(12): 10418-10426, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28266828

RESUMO

Bead-based microwell array technology is growing as an ultrasensitive analysis tool as exemplified by the successful commercial applications from Illumina and Quanterix for nucleic acid analysis and ultrasensitive protein measurements, respectively. High-efficiency seeding of magnetic beads is key for these applications and is enhanced by hydrophilic-in-hydrophobic microwell arrays, which are unfortunately often expensive or labor-intensive to manufacture. Here, we demonstrate a new single-step manufacturing approach for imprinting cheap and disposable hydrophilic-in-hydrophobic microwell arrays suitable for digital bioassays. Imprinting of arrays with hydrophilic-in-hydrophobic microwells is made possible using an innovative surface energy replication approach by means of a hydrophobic thiol-ene polymer formulation. In this polymer, hydrophobic-moiety-containing monomers self-assemble at the hydrophobic surface of the imprinting stamp, which results in a hydrophobic replica surface after polymerization. After removing the stamp, microwells with hydrophobic walls and a hydrophilic bottom are obtained. We demonstrate that the hydrophilic-in-hydrophobic imprinted microwell arrays enable successful and efficient self-assembly of individual water droplets and seeding of magnetic beads with loading efficiencies up to 96%. We also demonstrate the suitability of the microwell arrays for the isolation and digital counting of single molecules achieving a limit of detection of 17.4 aM when performing a streptavidin-biotin binding assay as model system. Since this approach is up-scalable through reaction injection molding, we expect it will contribute substantially to the translation of ultrasensitive digital microwell array technology toward diagnostic applications.


Assuntos
Bioensaio , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Nanotecnologia , Estreptavidina
10.
Methods Mol Biol ; 1547: 85-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28044289

RESUMO

Digital microfluidics has emerged in the last years as a promising liquid handling technology for a variety of applications. Here, we describe in detail how to build up an electrowetting-on-dielectric-based digital microfluidic chip with unique advantages for performing single-molecule detection. We illustrate how superparamagnetic particles can be printed with very high loading efficiency (over 98 %) and single-particle resolution in the microwell array patterned in the Teflon-AF® surface of the grounding plate of the chip. Finally, the potential of the device for its application to single-molecule detection is demonstrated by the ultrasensitive detection of the biotinylated enzyme ß-Galactosidase captured on streptavidin-coated particles in the described platform.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Desenho de Equipamento , Nanotecnologia , beta-Galactosidase/metabolismo
11.
Anal Chem ; 88(17): 8450-8, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27487722

RESUMO

Flu is caused by the influenza virus that, due to mutations, keeps our body vulnerable for infections, making early diagnosis essential. Although immuno-based diagnostic tests are available, they have low sensitivity and reproducibility. In this paper, the prospect of detecting influenza A virus using digital ELISA has been studied. To appropriately select bioreceptors for this bioassay, seven commercial antibodies against influenza A nucleoprotein were methodically tested for their reactivity and binding affinity. The study has been performed on two markedly different platforms, being an enzyme-linked immunosorbent assay and a surface plasmon resonance system. The selected antibodies displayed completely different behavior on the two platforms and in various assay configurations. Surprisingly, the antibodies that showed overall good reactivity on both platforms had the highest dissociation constant among the tested antibodies, suggesting that, although important, binding affinity is not the only parameter to be considered when selecting antibodies. Moreover, only one antibody had the capacity to capture the nucleoprotein directly in lysis buffer used for releasing this viral protein, which might pose a huge advantage when developing assays with a fast time-to-result. This antibody was implemented on an in-house developed digital ELISA platform for ultrasensitive detection of recombinant nucleoprotein, reaching a detection limit of 4 ± 1 fM in buffer and 10 ± 2 fM in 10-fold diluted nasopharyngeal swabs, which is comparable to currently available fast molecular detection techniques. These results point to a great potential for ultrasensitive immuno-based influenza detection.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Influenza A/química , Proteínas de Ligação a RNA/análise , Proteínas do Core Viral/análise , Proteínas do Nucleocapsídeo , Proteínas Recombinantes/análise
12.
Anal Chem ; 88(17): 8596-603, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27448015

RESUMO

The detection of single molecules in magnetic microbead microwell array formats revolutionized the development of digital bioassays. However, retrieval of individual magnetic beads from these arrays has not been realized until now despite having great potential for studying captured targets at the individual level. In this paper, optical tweezers were implemented on a digital microfluidic platform for accurate manipulation of single magnetic beads seeded in a microwell array. Successful optical trapping of magnetic beads was found to be dependent on Brownian motion of the beads, suggesting a 99% chance of trapping a vibrating bead. A tailor-made experimental design was used to screen the effect of bead type, ionic buffer strength, surfactant type, and concentration on the Brownian activity of beads in microwells. With the optimal conditions, the manipulation of magnetic beads was demonstrated by their trapping, retrieving, transporting, and repositioning to a desired microwell on the array. The presented platform combines the strengths of digital microfluidics, digital bioassays, and optical tweezers, resulting in a powerful dynamic microwell array system for single molecule and single cell studies.


Assuntos
Técnicas Analíticas Microfluídicas , Pinças Ópticas , Campos Magnéticos , Técnicas Analíticas Microfluídicas/instrumentação , Estreptavidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...